DISCLOSURES

CIHR
Canadian Consortium on Neurodegeneration and Aging
Ministry of Transportation of Ontario
Transport Canada
ACKNOWLEDGMENTS

Gary Naglie, MD, FRCPC
Sarah Sanford, PhD
Justin Chee, MSc
Carla Zucchero Sarracini, BA
LEARNING OBJECTIVES

To understand dementia-related driving risks.
To appreciate limitations of research in this area.
To move beyond knowledge to action, while balancing the risks.
BEWARE OF SHARED DELUSION

“The one thing that unites all human beings, regardless of age, gender, religion, economic status or ethnic background, is that, deep inside, we ALL believe that we are above average drivers.”

Dave Barry
Older drivers

• Fastest growing segment of licensed population

• Vast majority continue to be safe to drive

• Often unfairly characterized by the media
DRIVING

THE ULTIMATE IADL
Older drivers

- high crash rate per miles driven (though not the highest)
- crash for different reasons than younger persons
- involved in different types of crashes
- once involved in a crash - highest mortality and morbidity of any age group
Numerous medical conditions associated with crashes:

- Sensory and Motor Conditions
 - Vision
 - Movement (e.g. arthritis, pain)

- Mental Functioning
 - Abrupt changes (e.g. seizure, cardiac, cerebro-vascular)
 - Fluctuating (e.g. diabetes, psychiatric conditions)
 - Progressive (e.g. dementia, respiratory)

Prevalence of these conditions increases with age.
Psychosocial consequences

- Depression
- Social isolation
- Loss of self esteem
- Many report “worse than death”
- Impact on patient/physician relationship
CANDRIVE: DRIVING IN OLDER ADULTS

CIHR (PI: SHAUN MARSHALL)
Main goal is to determine tests that could be used by physicians to address medical fitness to drive questions

- In most Canadian provinces physicians are mandated by law to report who is not medically fit to drive
- What tests will predict who has at-fault crashes?
 - Need to examine driving exposure
WHAT DO WE HOPE TO FIND?

Are there tests that can be used by physicians in a specific way (not indiscriminately) to screen older drivers who are not medically fit to drive?
- Must not send a high proportion of older drivers on for further testing

Learn more about actual driving patterns, and how these patterns change over time with changes in medical conditions and function

What leads to driving cessation
Candrive / Ozcandrive: Study Description

Prospective Cohort Study
Candrive – age 70+ drivers
7 Canadian Sites
928 Drivers

- Comprehensive annual assessment
- 8 inter-related projects; common overall theme of knowledge translation
GPS PARTICIPANT DRIVING DATA: TO DATE OVER 37 MILLION KM OF DATA
RFID AND KEY FOB
Overall quality scores of guidelines on driving with medical illness and recommendations in descending order of overall quality

<table>
<thead>
<tr>
<th>Clinical Practice Guideline</th>
<th>Overall Quality</th>
<th>Overall Recommendation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommend</td>
<td>Recommend with Modifications</td>
</tr>
<tr>
<td>NHTSA/AMA (America)</td>
<td>5.00/7</td>
<td>25</td>
</tr>
<tr>
<td>Austroads (Australia)</td>
<td>4.88/7</td>
<td>62.5</td>
</tr>
<tr>
<td>NHTSA/AAMVA (America)</td>
<td>4.88/7</td>
<td>12.5</td>
</tr>
<tr>
<td>CMA (Canada)</td>
<td>4.13/7</td>
<td>12.5</td>
</tr>
<tr>
<td>DVLA Swansea (UK)</td>
<td>3.88/7</td>
<td>12.5</td>
</tr>
<tr>
<td>CCMTA (Canada)</td>
<td>3.63/7</td>
<td>0</td>
</tr>
<tr>
<td>RCPI/RSA (Ireland)</td>
<td>3.50/7</td>
<td>0</td>
</tr>
<tr>
<td>NZ Transport (New Zealand)</td>
<td>3.13/7</td>
<td>0</td>
</tr>
<tr>
<td>SMA (Singapore)</td>
<td>2.25/7</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope and purpose

Stakeholder involvement

Clarity of presentation

Rapoport et al, QJM 2015; 108:859-869
<table>
<thead>
<tr>
<th>Applicability</th>
<th>Rigour of development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austroads</td>
<td></td>
</tr>
<tr>
<td>CCMTA</td>
<td></td>
</tr>
<tr>
<td>CMA</td>
<td></td>
</tr>
<tr>
<td>DVLA Swansea</td>
<td></td>
</tr>
<tr>
<td>NHTSA/AAMVA</td>
<td></td>
</tr>
<tr>
<td>NHTSA/AMA</td>
<td></td>
</tr>
<tr>
<td>NZ Transport</td>
<td></td>
</tr>
<tr>
<td>RCPi/RSA</td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td></td>
</tr>
</tbody>
</table>

Editorial independence

Austroads	
CCMTA	
CMA	
DVLA Swansea	
NHTSA/AAMVA	
NHTSA/AMA	
NZ Transport	
RCPi/RSA	
SMA	

Rapoport et al, QJM 2015; 108: 859-869
An international team of experts followed the ADAPTE guideline adaptation process to: a) perform a knowledge synthesis on driving with dementia; and b) update existing clinical recommendations.

TEAM STRUCTURE: MEMBERSHIP

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CITIES</th>
<th># MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Toronto, Ottawa, Hamilton, London, Kingston, Quebec City, Victoria</td>
<td>16</td>
</tr>
<tr>
<td>Australia</td>
<td>Clayton</td>
<td>2</td>
</tr>
<tr>
<td>Belgium</td>
<td>Brussels</td>
<td>1</td>
</tr>
<tr>
<td>Ireland</td>
<td>Dublin</td>
<td>2</td>
</tr>
<tr>
<td>UK</td>
<td>Coventry</td>
<td>2</td>
</tr>
<tr>
<td>USA</td>
<td>St. Louis, MO, New Haven, CT</td>
<td>2</td>
</tr>
</tbody>
</table>

TRAINING SPECIALTY # MEMBERS

<table>
<thead>
<tr>
<th>TRAINING</th>
<th>SPECIALTY</th>
<th># MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Geriatric Psychiatrist, Geriatrician, Physiatrist, Psychiatrist, Neurologist, Family Physician</td>
<td>13</td>
</tr>
<tr>
<td>PhD</td>
<td>Pharmacologist, Psychologist, Occupational Therapist</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Medical Librarian</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Transportation Knowledge User</td>
<td>2</td>
</tr>
</tbody>
</table>
TEAM STRUCTURE: WORKING GROUPS AND PROJECT SCOPE

Adapted from Guidelines 2.0: systematic development of a comprehensive checklist for a successful guideline enterprise.
SYNTHESIS

What is the absolute and relative risk of motor vehicle collision or driving impairment, as measured by on-road testing, associated with different severities of dementia (mild, moderate, or severe) and different diagnoses (e.g. common non-AD neurodegenerative dementias, including Frontotemporal Dementia, Vascular Dementia, Lewy body disease, etc.)?
DEMENTIA AND DRIVING

- Crash rates in dementia are increased 2-8 times relative to age-matched controls.
- Between 22% and 64% of patients with dementia continue to drive.
- Many physicians do not report patients with Mild Cognitive Impairment or mild dementia because the existing guidelines are unclear and physicians are uncomfortable with them.
- No consensus previously on which patients to report.
STUDIES OF CRASH RISK IN DEMENTIA

Systematic review 2007

6 studies, 2 of highest quality (8/9 on Ottawa-Newcastle)

- BC: Cooper et al, 1993
 - Drivers with at least one collision 43 (26.1%) dementia vs 19 (11.5%) comparison.

- Michigan: Trobe et al, 1996;
 - Event Rate/ Driver years 0.08 crashes/driver years in dementia AND comparison

Cooper et al Journal of Safety Research Vol. 24, 9-17, 1993
Absolute and Relative Risk Summary

<table>
<thead>
<tr>
<th></th>
<th>Rates</th>
<th>Absolute Difference</th>
<th>Relative Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario 2011 Collisions</td>
<td>Sex 4.3% M 2.4% F</td>
<td>1.9%</td>
<td>57%</td>
</tr>
<tr>
<td>Ontario 2011 Collisions</td>
<td>Age 4.2%, 21-24 2.3%, 75+</td>
<td>1.9%</td>
<td>59%</td>
</tr>
<tr>
<td>US 2003 Fatalities</td>
<td>M vs F (age 20-24)</td>
<td>43/100k, M 14/100k, F</td>
<td>0.029%</td>
</tr>
<tr>
<td>US 2003 Fatalities</td>
<td>Age 29/100k, 20-24 16/100k, 75-79</td>
<td>0.013%</td>
<td>58%</td>
</tr>
<tr>
<td>BC 1993 Dementia</td>
<td>26.1% dem 11.5% comp</td>
<td>14.6%</td>
<td>78%</td>
</tr>
<tr>
<td>Michegan 1996 Dementia</td>
<td>0.08 mvc/driv yr Dem and comp</td>
<td>0.000%</td>
<td>0%</td>
</tr>
</tbody>
</table>

2011 Ontario Road Safety Annual Report, MTO
Williams et al, J Safety Research (2003); 34: 527-531
Cooper et al Journal of Safety Research Vol. 24, 9-17, 1993
PRISMA

Literature Search (1990-2015)
1. Databases: MEDLINE, CINAHL, Scopus, CENTRAL, EMBASE, PsychInfo, and TRID
2. Limits: English-language articles only, published after 2004, any type of dementia (any severity), outcomes related to number of motor vehicle accidents and any formal on-road or naturalistic driving assessment

- Search results combined (n = 12860)
 - Duplicate records removed (n = 3695)

- Records screened on the basis of titles (n = 9165)
 - Excluded (n = 6379)

- Records screened on the basis of abstracts (n = 2786)
 - Excluded (n = 2389)

- Full-text studies assessed for eligibility (n = 397)
 - Excluded (n = 363)
 - No Outcomes of Interest: 70
 - No Dementia-Healthy Comparisons: 100
 - No Outcomes of Interest or Dementia-Healthy Comparisons: 71
 - Prior to 2005: 60
 - Wrong Publication Type: 29
 - Irrelevant to Research Question 1: 25
 - Simulator Studies: 8

- Studies available for data extraction (n = 34)
 - Later Exclusions (n = 26)
 - Irrelevant Outcomes: 10
 - No Patient-Healthy Comparisons: 4
 - No Extractable Data: 4
 - Common Data Sample: 8

- Studies included in qualitative synthesis (n = 7)
 - Excluded (n = 4)
 - No Extractable Quantitative Data: 4

- Studies included in quantitative synthesis (meta-analysis) (n = 4)
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Crash Risk Variable</th>
<th>Comparison Group: Baseline Result</th>
<th>Dementia Group: Baseline Result</th>
<th>Comparison Group: Longitudinal Result</th>
<th>Dementia Group: Longitudinal Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al. (2012)</td>
<td>Percentage of persons with MVCs</td>
<td>13.6% (Past 1 Year)</td>
<td>8.5% (Past 1 Year)</td>
<td>Not assessed</td>
<td>Not assessed</td>
</tr>
<tr>
<td></td>
<td>Number of MVCs per year/10,000 miles driven</td>
<td>0.02 (0.04) (Unclear: Past 1-3 Years)</td>
<td>1.4 (7.5) (Unclear: Past 1-3 Years)</td>
<td>Not assessed</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Ott et al. (2008)</td>
<td>Percentage of persons with MVCs</td>
<td>11% (Past 3 Years)</td>
<td>18% (Past 3 Years)</td>
<td>11% (Next 1.5 Years)</td>
<td>1%** (Next 1.5 Years)</td>
</tr>
<tr>
<td></td>
<td>Number MVCs per 1000 miles driven per week</td>
<td>1.86 (Past 3 Years)</td>
<td>8.78 ** (Past 3 Years)</td>
<td>5.63 (Next 1.5 Years)</td>
<td>1.85** (Next 1.5 Years)</td>
</tr>
<tr>
<td></td>
<td>MVC rate per driver per year</td>
<td>0.04 (Past 3 Years)</td>
<td>0.06 (Past 3 Years)</td>
<td>0.06 (Past 3 Years)</td>
<td>0.01** (Past 3 Years)</td>
</tr>
<tr>
<td></td>
<td>Total number of MVCs</td>
<td>5 (Past 3 Years)</td>
<td>17 (Past 3 Years)</td>
<td>5 (Past 3 Years)</td>
<td>2** (Past 3 Years)</td>
</tr>
</tbody>
</table>
Meta-Analysis of the Risk of Road Test Failure Associated with Dementia

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Dementia Events</th>
<th>Healthy Elderly Events</th>
<th>Total</th>
<th>Weight</th>
<th>M-H, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln 2006 (1)</td>
<td>4</td>
<td>0</td>
<td>31</td>
<td>19.6%</td>
<td>7.58 [0.42, 135.51]</td>
<td>2006</td>
</tr>
<tr>
<td>Ott 2008 (2)</td>
<td>13</td>
<td>0</td>
<td>44</td>
<td>20.8%</td>
<td>14.29 [0.87, 234.93]</td>
<td>2008</td>
</tr>
<tr>
<td>Davis 2012 (3)</td>
<td>1</td>
<td>0</td>
<td>44</td>
<td>16.2%</td>
<td>2.25 [0.09, 53.95]</td>
<td>2012</td>
</tr>
<tr>
<td>Barco 2015 (4)</td>
<td>37</td>
<td>1</td>
<td>32</td>
<td>43.4%</td>
<td>19.73 [2.84, 137.23]</td>
<td>2015</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>240</td>
<td>151</td>
<td>391</td>
<td>100.0%</td>
<td>10.77 [3.00, 38.62]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 55

Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1.50$, df = 3 ($P = 0.68$); $I^2 = 0$

Test for overall effect: $Z = 3.65$ ($P = 0.0003$)
DRIVING PERFORMANCE OUTCOMES

Large Effects:
Davis et al (2012) – Road Test Error Scores
Eby et al (2012) – Lost trips, miles belted, miles driven with short headway, miles driven 10mph or more slower than surrounding traffic.
Whehilan et al (2005) – Road Test Error Scores

Medium Effects
Barco (2015) Errors turning right or driving straight
1. Dementia often has a direct effect upon fitness to drive, and clinicians must not neglect any indications of possible cognitive compromises of fitness to drive. (Level C)

2. Diagnosis of dementia alone is not sufficient to withdraw driving privileges. (Level A)

3. Severe dementia is an absolute contraindication to driving. (Level C)

4. It unlikely that safe driving can be maintained in the presence of moderate dementia (ie any basic ADL impairments) due to cognition, and driving is to be strongly discouraged. If patients wish to continue to drive, they should be formally assessed and monitored very carefully for delirium or any progressive loss of cognition and function that would mandate holding off driving until reassessment can occur. When in doubt it is recommended to err on the side of public safety. (Level C)
OTHER TOPICS OF DRAFT GUIDELINES

ADL/IADL loss
Screening
Re-evaluation
On-road testing
Dementia not in isolation

Behavioral Changes
Language impairment
Planning cessation
Burdens of cessation
Caregiver report
Tool Development

- Literature review
- Guideline search
- Caregiver team
- Qualitative interviews

Driving in Mild Dementia Decision Tool (DMD-DT) Intervention

| Computerized Clinical Decision Support System (CCDSS) | Educational Package | Specialized Reporting Form |

Participants: General Family MDs, Specially-trained Family MDs, Neurologists, Geriatric Psychiatrists, Geriatricians.

Outcomes: Reporting to transportation authorities, Doctor-patient relationship.
PRELIMINARY ANALYSIS

Per-protocol reporting rate was 43% in the control group and 49% in the intervention group.

The base rate was much higher than we anticipated (43% instead of 13%) and the difference between groups was smaller (6% instead of 10%).

Group was not a significant predictor of per-protocol reporting.
In a multivariate analysis, caregiver concern (OR 6.2, 95% CI 2.7-14.3) and abnormal clock drawing (OR 10.6, 95% CI 5.0-22.5) were predictors of per-protocol reporting.

- Of course, caregiver concern and abn clock are included in the algorithm of the intervention, but the multivariable analysis controls for group membership.

Interpretation: The intervention doesn’t increase reporting but rather caregiver concern and clock drawing abnormalities are strong predictors of reporting patients with mild dementia/MCI.
CCNA Team 16: Driving and Dementia
Team Leaders: G. Naglie & M. Rapoport
Research Associate: S. Sanford
STUDY OBJECTIVES

1. To develop a multi-component, evidence-based intervention that supports decision-making about driving, as well as emotional, transportation and other needs following driving cessation

2. To build upon existing driving cessation research by including the perspectives of key stakeholders
1. Driving cessation interventions for individuals with dementia and older adults
2. Strategies to facilitate driving cessation for persons with dementia
3. Sex differences in driving cessation in dementia
4. Alternative transportation options for individuals with dementia
5. Intervention approaches to major life transitions in older adulthood
6. Psychotherapeutic interventions for older adults with cognitive impairment
• In-depth, semi-structured interviews and focus group sessions to explore the perspectives and experiences of key stakeholders (n=31) on strategies to support decision-making and the transition to non-driving
 – Healthcare providers (n=10)
 – Representatives from organizations (n=6)
 – Family caregivers (n=13)
 – Former drivers with dementia (n=2)
• Informal consultation with other stakeholders
• Semi-structured website searches for relevant tools and resources
• Review of publically available tools and resources in different formats
• Resources assessed for relevance, feasibility and accessibility
CHALLENGES IDENTIFIED

• Relative gap in intervention research on driving cessation and dementia
• Evidence to support existing interventions is relatively weak
• Lack of education and resources to support advanced planning and decision-making about driving cessation and the transition to non-driving
• Healthcare providers and caregivers experience difficulty determining which resources are trustworthy

• Supportive approaches to emotional responses are often overlooked due to narrow focus on practical approaches (e.g., transportation planning)

• Following driving cessation, caregivers often assume the “burden” to maintain purpose, roles and social participation of person with dementia
META-SYNTHESIS OF RESEARCH FINDINGS

• Framework for cessation interventions for persons with dementia and their caregivers with a toolkit of approaches and resources

• Draws from Transtheoretical Model of Behaviour Change - concept of decision stages from pre-contemplative to post-cessation

• Themes represent distinct, but overlapping, content areas that depict various needs of drivers and former drivers with dementia, as well as those of their caregivers
1. Driving and Dementia Education and Awareness
2. Communication Support
3. Crisis Support
4. Practical Planning
5. Skills Building
6. Coping with Loss and Grief
7. Interpersonal Elements and Role Transitions
8. Identity and Preservation of Meaning
9. Mobility Support
10. Community Access and Social Participation
11. Adjustment and Adaptation to Change
12. Advocacy and Political Action
IMPLICATIONS

• Address a range of needs by offering individualized approaches with supportive tools and resources
• Increase accessibility of available resources
• Facilitate driving cessation decisions and improve safety for persons with dementia and the public
• Improve quality of life by maintaining social inclusion
• Implement framework and accompanying toolkit in local settings
• Evaluate toolkit – content, experience of delivery, use and early effects
• Refine toolkit and approaches to implementation in different contexts
• National implementation and evaluation of outcomes
1. Develop and evaluate a unique group-based intervention for persons with dementia and their caregivers based on the intervention framework and toolkit

2. Establish the unique driving intervention needs of rural drivers with dementia and their caregivers

3. Identify and evaluate a GPS-based outcome measure of life space for persons with dementia that can be used as an outcome measure of interventions for driving cessation
SCREENING AT THE GOVERNMENT LEVEL

Chi-Square 10.98, df (1), p< 0.0001

Fatality rate per 100,000

19.31 20.5
12.6 13.37
14.17 13.8
20.5 13.37
5.83 19.3
Before
After
Young Driver Old Driver Young Pedestrian Old Pedestrian

Siren and Meng, Accid Analysis Prev 2012; 45: 634-8
DEMENTIA & DRIVING

- The diagnosis of dementia does **not** automatically mean **no driving** (some people with mild dementia can drive albeit for a **limited period of time** before they must hang up the keys)

- The diagnosis of dementia does **mean**:
 - You **must** ask if the person is still driving
 - You **must** assess and document driving safety and follow your provincial reporting requirements
 - If safe to drive, you **must** reassess fitness-to-drive every 6 months
 - You **should** start to counsel regarding eventual ‘driving retirement’ as early as possible to allow the patient to process, adjust and prepare
ROAD MAP FOR ASSESSMENT OF A DRIVER WITH DEMENTIA

Unsafe to drive (page 9-20)

Driving risk is uncertain (page 16)

Appears safe (page 16-17)

The doctor will confirm the diagnosis of dementia and address any conditions that could be aggravating the situation

IF there are additional health and safety concerns requiring further assessment and treatment OR the person truly cannot afford an on-road test

IF driving safety is the only issue to assess.

The doctor will ask the person to stop driving (may provide a written record and will document in medical record) (page 25)

Follow-up with physician (every 6 – 12 months)

Provincial Registrar will be notified and will make the final decision about whether the licence will be cancelled

Referral to a local multidisciplinary dementia assessment site (could include occupational therapy or neuropsychology evaluation)

If still unsure about fitness to drive

Referral for a health-professional-led comprehensive on/off-road driving evaluation (page 12)

Byszewski, Dementia and Driving Toolkit (online resource. www.Rgpeo.com)
RATIONAL USE OF COGNITIVE TESTING

Are the test results consistent with other clinical evidence?
What are we really measuring?
What is the trajectory?
What is my duty?
Common sense
Qualitative and dynamic aspects of testing.
Trichotomization

HOW TO

Document re: Driving
Ask Family.
Review cognition, behavior, function, hearing, motor, and sensory function.
Rule out significant dangerous medical conditions (eg. Seizure disorder, sleep apnea, stroke, PD), medications (esp anticholinergic) and substances.
Decide on referral for specialized testing.
Give feedback.
SUMMARY

Not the same as driving in the elderly.
Many cognitive skills required.
Dementia increases crash risk, but also decreases exposure. Not enough info.
Drivers with dementia are persistent.
Many patients in the early stages may be safe to drive.
Cognitive testing limited predictive ability. We need better tools.
Individualized assessment needed. We need to make this practical and affordable.
Behavioral changes play a significant role, especially psychosis, apathy and depression.
Legislation - Safety outweighs autonomy, very challenging to balance, and doctors are not reporting.
Principle Investigators:
Gary Naglie (Baycrest Health Sciences, University of Toronto),
Mark Rapoport (Sunnybrook Health Sciences, University of Toronto)

Co-Investigators:
Michel Bédard (Lakehead University)
Isabelle Gélinas (McGill University)
Shawn Marshall (University of Ottawa)
Barbara Mazer (McGill University)
Frank Molnar (University of Ottawa)
Anita Myers (University of Waterloo)
Jan Polgar (Western University)
Michelle Porter (University of Manitoba)
Holly Tuokko (University of Victoria)
Brenda Vrkljan (McMaster University)
Paige Moorhouse (Dalhousie University)
Alexander Crizzle (University of Saskatchewan)
Patricia Belchior (McGill University)
Stephanie Yamin (Saint-Paul University)

Other CCNA Team and Platform Collaborators:
- Mary C. Tierney (Sunnybrook Health Sciences, University of Toronto), Lead, CCNA Women, Gender, Sex and Dementia Platform
- Alex Mihailidis (University of Toronto), Lead, Team 15: Gerontechnology and Dementia
- Joel Sadavoy and Mary Chiu (Mount Sinai Hospital, University of Toronto), Leads, Team 18: Effectiveness of Caregiver Intervention
- Debra Morgan (University of Saskatchewan), Lead, Team 20: Issues in dementia care for rural and indigenous populations
Candrive Contributors

Candrive

Co-Principal Investigators
- Malcolm Man-Son-Hing
- Shawn Marshall

Program Manager
- Lynn MacLeay

Research Associates
- Jennifer Biggs
- Minh-Thy Dinh Truong
- Novlette Fraser
- Sheila Garrett
- Karen Gibson
- Anita Jessup
- Linda Johnson
- Rivi Levkovich
- Phyllis McGee
- Laura Morrison
- Joane Parsons
- Suzie Schwartz
- Felice Wise

Carleton University
- Rafik Goubin
- Bruce Wallace

Ozcandrive

Principal Investigator
- Judith Charlton

Co-Investigators
- Peter Darzins
- Marilyn Di Stefano
- Sjaan Koppel
- Jim Langford
- Shawn Marshall
- Wendy Macdonald
- Morris Odell

Research Associates
- Lorraine Atkinson
- Louise Beasely
- Elizabeth Jacobs
- Sjaan Koppel
- Kate Mora
- Grace Rive

CIHR IRSC

Can drive

Driving research for older adults.

Au volant de la recherche sur les aînés.
Questions?