SPECIALIZED GERIATRIC SERVICES

RGPEO May 2019 Phil St John Section of Geriatrics

Faculty/Presenter Disclosure

- Faculty: Phil St John
- Relationships with commercial interests:
 - Grants/Research Support: CIHR, MHRC, Riverview Foundation
 - Speakers Bureau/Honoraria: None
 - Consulting Fees: None
 - Other: Employee of University of Manitoba, WRHA
 - I am a geriatrician

Disclosure of Commercial Support

 I am unaware if this program has received financial or in-kind support from any outside organization.

Potential for conflict(s) of interest:

 Phil St John has not received payment/funding, etc. from an organization supporting this program <u>AND/OR</u> organization whose product(s) are being discussed in this program.

Mitigating Potential Bias

Not applicable.

OBJECTIVES

- To review basic epidemiology and demography of aging
- To describe outpatient systems of care
- To review the evidence for these models of care

KEY POINTS

- Comprehensive Geriatric Assessment (CGA)
 - Is beneficial in maintaining functional status
 - Reduces the need for long term care
 - Reduces the utilization of acute care hospitals
- CGA is NOT a replacement for primary care
- There are numerous evidence based models the correct implementation depends upon local need, context and history
- Outpatient care models should be integrated with other specialized geriatric services

HISTORICAL CONTEXT

- Health care has been delivered in the community since ancient Egyptian times
- Primary care home visits are not new
- In home Geriatric consults
 - Exton-Smith (1950s) screened patients for admission to inpatient beds – realized the benefit of home based assessments in their own right
- Geriatric Day Hospitals started in England in the 1950s

- Increase in specialty clinics
- Spread to Canada (sometimes via the US.)
- Other models studied in the 1990s to present
 - Outreach teams
 - Primary care teams
 - Post-discharge services
 - Disease based rehab
 - Co-management
 - Decision support

The Grey Wave, the Silver Tsunami and all that

Historical Context

We are almost the healthiest population anywhere, ever

	Life Expectancy at Birth (Years)	Infant Mortality Rate (per 1000 Live Births)
Prehistoric	20–35	200-300
Sweden, 1750s	37	210
India, 1880s	25	230
United States, 1900	48	133
France, 1950	66	52
Japan, 1996	80	4
1951; Human Mortali	kistan, Princeton, NJ.	, 1970; Davis, K., <i>The Pop</i> - Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali & - & - & -	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.
1951; Human Mortali	ikistan, Princeton, NJ. ty Database, www.mo	Princeton University Press. ortality.org.

Figure 1-3a: Manitoba Population Pyramids Actual (2016)

Source: Statistics Canada - 2016 Census. Catalogue Number 98-400-X2016001.

© 2016 Centre on Aging, University of Manitoba

Source: Statistics Canada - 2016 Census. Catalogue Number 98-400-X2016001.

Multimorbidity

Lancet, Volume 380, Issue 9836, 2012, 37-43

Prevalence of multimorbidity by age and socioeconomic status On socioeconomic status scale, 1=most affluent and 10=most deprived.

Age and Chronic Illness

Nature Reviews | Neuroscience Brayne Nature Reviews Neuroscience 8, 233–239 (March 2007)

Functional Trajectories

Lunney et al. J Am Geriatr Soc , 2002, 50 (pg. 1108-1112)

Geriatric Giants

- Impaired Independence
- Incontinence
- Instability
- Impaired Cognition
- Immobility
- (latrogenesis)

"Families felt something was wrong"

(Isaacs, 1965 and 1980)

The New Giants

Summary of Demography and Epidemiology

- This has been a slow steady predictable increase in the number of older adults
- Most of these individuals are healthy and functionally intact
- However, the rates of functional impairment, cognitive impairment and morbidity have increased predictably
- Maybe we should do something about this

What should we do??

- Align health systems to the needs of the older populations they now serve
 - Person oriented care
 - Focus on intrinsic capacity
 - Appropriate work force
 - Access to CGA
- Adequate LTC
- Age friendly environments
- Good data

Comprehensive Geriatric Assessment

 A multidisciplinary diagnostic and treatment process that identifies medical, psychosocial, and functional limitations of a frail older person in order to develop a coordinated plan to maximize overall health with aging

Disease Oriented

- Disease treatment
- Discrete pathology
- Symptoms addressed by curing the disease
- Outcomes are survival or presence of the disease

- Individual priorities
- Complex causal pathways
- Treatment goals set by individual
- Survival one of several competing goals

Tinetti and Fried, 2004 (images from VA and CBS)

Common referral triggers

- Age
- Medical comorbidities (eg, hip fracture, transcatheter aortic valve replacement [TAVR])
- Psychosocial problems
- Specific geriatric conditions such as functional disability
- Previous or predicted high health care utilization
- Consideration of change in living situation (eg, from independent living to assisted living, nursing home, or in-home caregivers)

Who Benefits?

The geriatric process

Assessment

- Health (diagnoses, prognosis)
- Function (physical, mental)
- Resources (culture, education, social, economic)

Agree objectives of care

- What does the patient want?
- What is feasible?

Specify the management plan

- Objective—To close the ecological gap between what the patient can do and what the environment requires
- · Therapeutic changes—improve the patient
- Prosthetic changes—reduce environmental demands

Regular review

- Is progress as expected?
- Does the plan need changing?

Geriatric Technology

TEAMS

- Multidisciplinary team a team of professionals including representatives of different disciplines who coordinate the contributions of each profession, which are not considered to overlap, in order to improve patient care.
- Interdisciplinary team group of health care professionals from diverse fields who work in a coordinated fashion toward a common goal for the patient.
- Transdisciplinary team a team composed of members of a number of different professions cooperating across disciplines to improve patient care through practice or research.

• There is no "right" team – it is context specific

- There are "wrong" teams
 - Silos
 - Poor communication within team and between teams
 - Under-resourced teams
 - Lack of clear mandate

MODELS OF CARE

- No Geriatrics
- Geriatricians in primary care of well elderly good evidence of poor outcomes/cost (Hoogendijk et al)
- Co-managed care eg. Ontario memory clinics (Lee, et al, 2019)
- Clinics usually disease-based (eg memory clinics, falls clinics, incontinence clinics)

CGA Models

- Disease based multidisciplinary teams
- Decision Support Teams (eg PATH clinic, pre-TAVR clinics, etc)
- CGA multidisciplinary teams Geriatric Day Hospitals
- Home based CGA

Evidence for GDH

Cochrane Database of Systematic Reviews

Medical day hospital care for older people versus alternative forms of care (Review)

Brown L, Forster A, Young J, Crocker T, Benham A, Langhorne P, Day Hospital Group

Conclusions

- Evidence for better outcomes with comprehensive assessment compared to usual care
- No evidence of superiority of GDH compared to other comprehensive care

Since then

- AGE-Fit Trial (Ekdahl et al, 2016)
- RCT in Sweden
 - Longer time alive and in the community
 - Similar hospitalization, but less time in hospital
 - Comparable cost
Outreach Teams

- Home visiting services
- Present in many Canadian cities
- Visit from health professional
- Medical, social, functional and psychological
- Sometimes with follow-up

Evidence for Benefit

- Reduced Nursing Home Admission OR 0.90
- Reduced risk of functional decline OR 0.95
- Reduced death rate OR 0.94

However

- Effect only seen in interventions that
 - Had BOTH medical and psychosocial components
 - Had multiple follow-up visits and/or control over recommendations
 - Targetted younger, less frail people

Evidence for all outpatient CGA

Study context	Not living at home N=79578	Death N=93754	Nursing home admission N=79 575	Hospital admission N=20 047	People with falls N=15607	Physical function N=21651
Geriatric assessment of general elderly people	0.95 (0.93 to 0.98)	1.00 (0.98 to 1.03)	0.86 (0.83 to 0.90)	0.98 (0.92 to 1.03)	0.76 (0.67 to 0.86)	-0.12 (-0.16 to -0.08)
1 ²	35.3%	39.7%	47.5%	61.4%	0	0
Geriatric assessment of elderly people selected as frail	1.00 (0.87 to 1.15)	1.03 (0.89 to 1.19)	1.01 (0.83 to 1.23)	0.90 (0.84 to 0.98)	0.99 (0.89 to 1.10)	-0.01 (-0.06 to 0.04)
1 ²	43·3%	0	28.8%	11.0%	0	57.9%
Community-based care after hospital discharge	0.90 (0.82 to 0.99)	0.97 (0.89 to 1.05)	0.77 (0.64 to 0.91)	0.95 (0.90 to 0.99)	0.82 (0.61 to 1.08)	-0.05 (-0.15 to 0.04)
1 ²	2.2%	5.2%	0	57.0%	40.3%	0
Fall prevention	0.86 (0.63 to 1.19)	0.79 (0.66 to 0.96)	1.26 (0.70 to 2.27)	0.84 (0.61 to 1.16)	0.92 (0.87 to 0.97)	-0.25 (-0.36 to -0.13)
1 ²	0	0	0	0	65.8%	4.1%
Group education and counselling	0.62 (0.43 to 0.88)	0.80 (0.42 to 1.55)	0.50 (0.05 to 5.49)	0.75 (0.51 to 1.09)	n/a	0.05 (-0.20 to 0.30)
1 ²	0	0	n/a	n/a	n/a	n/a
All complex interventions	0.95 (0.93 to 0.97)	1.00 (0.97 to 1.02)	0.87 (0.83 to 0.90)	0.94 (0.91 to 0.97)	0.90 (0.86 to 0.95)	-0.08 (-0.11 to-0.06)
1 ²	29.3%	10.6%	29.0%	43.0%	52.8%	45.9%*

 $n/a = not applicable. * Activities of daily living -0.08 (-0.11 to -0.04, I^2 = 37.5\%) and generic physical function -0.09 (-0.13 to -0.05, I^2 = 64.0\%).$

Table: Relative risk (95% CIs) of outcome by intervention context (standardised mean difference for physical function) and I² heterogeneity statistic

- Complex interventions can help elderly people to continue living at home, largely through prevention of the need for nursing-home care, and can help to reduce the rate of falls.
- Substantial variation in the format of care, involvement of health-care professionals, and site of care provision and intensity was reported.

 Because the evidence did not suggest that one format of care provision was better than another, the possibility might exist to tailor different formats of care to the needs and preferences of the individual, a conclusion similar to that drawn from the UK assessment of an expert patient programme.

The Onion, 2008

ESSENTIAL COMPONENTS OF CGA

- Must attend to all aspects of a person and their context
- Must have some mechanism to ensure advice is carried out
- Should be within an organized geriatric programme

IF This is done correctly

Better outcomes for frail older adults

- Better outcomes for their families
- Better outcome for the system

CONCLUSIONS

- Outpatient CGA is an important piece of outpatient care
- It reduces functional decline, the risk of long-term care and hospital utilization

How CGA is offered depends upon local context

Table 1.	Characteristics (of Two	Models	of Medical Care	
----------	-------------------	--------	--------	-----------------	--

Disease-Oriented Model	Integrated, Individually Tailored Model
Clinical decision making is focused primarily on the diagnosis, prevention, and treatment of individual diseases. Discrete pathology is believed to cause disease; psychological, social, cultural, environmental and other factors are	Clinical decision making is focused primarily on the priorities and preferences of individual patients.Health conditions are believed to result from the complex interplay of genetic, environmental, psychological, social, and other fortune.
secondary factors, not primary determinants of disease. Treatment is targeted at the pathophysiologic mechanisms thought to cause the disease(s). Symptoms and impairments are best addressed by diagnosing	and other factors. Treatment is targeted at the modifiable factors contributing to the health conditions impeding the patient's health goals. Symptoms and impairments are the primary foci of treatment
and treating "causative" disease(s). Relevant clinical outcomes are determined by the disease(s).	even if they cannot be ascribed to a discrete disease. Relevant clinical outcomes are determined by individual patient preference.
Survival is the usual primary focus of disease prevention and treatment.	Survival is one of several competing goals.

Authors' conclusions

There is low quality evidence that medical day hospitals appear effective compared to no comprehensive care for the combined outcome of death or poor outcome, and for deterioration in ADL. There is no clear evidence for other outcomes, or an advantage over other medical care provision.

Analysis I.2. Comparison I Day Hospital vs Alternative Care - patient outcomes, Outcome 2 Death or institutional care by the end of follow up.

Review: Medical day hospital care for older people versus alternative forms of care

Comparison: I Day Hospital vs Alternative Care - patient outcomes

Outcome: 2 Death or institutional care by the end of follow up

Study or subgroup	Treatment	Control	Odds Ratio M-	Weight	Odds Ratio
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
I Day hospital vs Comprehen	sive elderly care				
Eagle 1991	19/55	14/58	+	7.5 %	1.66 [0.73, 3.76]
Hedrick 1993	219/395	207/390	+	14.7 %	1.10 [0.83, 1.46]
Pitkala 1991	13/88	19/86		7.9 %	0.61 [0.28, 1.33]
Tucker 1984	7/59	9/50		5.4 %	0.61 [0.21, 1.79]
Subtotal (95% CI)	597	584	+	35.5 %	1.00 [0.69, 1.44]
Total events: 258 (Treatment)					
Heterogeneity: $Tau^2 = 0.04$; C	10011 (10012004 1105 -111 4 10	= 0.25); l ² =27%			
Test for overall effect: Z = 0.0 2 Day hospital vs Domiciliary	. ,				
Burch 1999	23/50	22/55		8.0 %	1.28 [0.59, 2.77]
Crotty 2008	11/113	8/116		6.3 %	1.46 [0.56, 3.76]
Gladman 1993	18/76	30/79		8.9 %	0.51 [0.25, 1.02]
Vetter 1989	0/29	0/30			Not estimable
Young 1992	7/61	4/63		4.2 %	1.91 [0.53, 6.90]
Subtotal (95% CI)	329	343	-	27.3 %	1.05 [0.57, 1.92]
Total events: 59 (Treatment),	64 (Control)				
Heterogeneity: $Tau^2 = 0.17$; C		= 0.13); I ² =46%			
Test for overall effect: $Z = 0.1$					
3 Day hospital vs No compre Hui 1995		20/50		7/0/	005 0 0 0 0 1 0 0
Hui 1995	19/49	20/50		7.6 %	0.95 [0.42, 2.13]
Masud 2006	12/182	10/181		7.0 %	1.21 [0.51, 2.87]
Weissert 1980	47/194	80/190		12.4 %	0.44 [0.28, 0.68]
Woodford 1962	20/168	35/163		10.1 %	0.49 [0.27, 0.90]
Subtotal (95% CI)	593	584	-	37.2 %	0.63 [0.40, 1.00]
Total avante 98 (Treatmont)	145 (Control)		1		

ES (95% CI)

Figure 7. Changes in two life table functions: the age distribution of deaths and the survival curve for Canadian females, selected periods between 1921–24 and 2005–09.

Source: Canadian Human Mortality Database, 2014.

Chart 1 Total number of expected years of life at birth and at age 90, 1921-2011

